108-指考-數學甲-02

設$n$為正整數。第$n$個費馬數(Fermat Number)定義為${{F}_{n}}={{2}^{({{2}^{n}})}}+1$,例如${{F}_{1}}={{2}^{({{2}^{1}})}}+1={{2}^{2}}+1=5$,${{F}_{2}}={{2}^{({{2}^{2}})}}+1={{2}^{4}}+1=17$。試問$\frac{{{F}_{13}}}{{{F}_{12}}}$的整數部分以十進位表示時,其位數最接近下列哪一個選項?($\log 2\approx 0.3010$)
(1) 120
(2) 240
(3) 600
(4) 900
(5) 1200


類型:單選  難度:適中

答案
(5)

相關趣

  • 三次函數圖形三次函數圖形若$m,n$為實數且滿足$\begin{cases}m^3+9m^2+28m-1989=0\\n^3-3n^2+4n+2017=0\end{cases},$求$m+n=$________
  • 108-學測-數學-04108-學測-數學-04廚師買了豬、雞、牛三種肉類食材以及白菜、豆腐、香菇三種素類食材。若廚師想用完這六種食材作三道菜,每道菜可以只用一種食材或用多種食材,但每種食材只能使用一次,且每道菜一定要有肉,試問食材的分配共有幾種方法? (1) 3 (2) 6 (3) 9 (4) 18 (5) 27
  • 108-學測-數學-11108-學測-數學-11某地區衛生機構成功訪問了500人,其中年齡為$50-59$歲及60歲(含)以上者分別有220名及280名。這500名受訪者中,120名曾做過大腸癌篩檢,其中有75名是在一年之前做的,有45名是在一年之內做的。已知受訪者中,60歲(含)以上者曾做過大腸癌篩檢比率是$50-59$歲者曾做過大腸癌篩檢比率的3.5倍。試選出正確的選項。
    (1) 受訪者中年齡為60歲(含)以上者超過$60%$
    (2) 由受訪者中隨機抽取兩人,此兩人的年齡皆落在$50-59$歲間的機率大於0.25
    (3) 由曾做過大腸癌篩檢的受訪者中隨機抽取兩人,其中一人在一年之內受檢而另一人在一年之前受檢的機率為$2\cdot (\frac{45}{120})(\frac{75}{119})$
    (4) 這500名名受訪者中,未曾做過大腸癌篩檢的比率低於$75%$
    (5) 受訪者中60歲(含)以上者,曾做過大腸癌篩檢的人數超過90名
  • 108-指考-數學甲-11108-指考-數學甲-11設$z$為複數。在複數平面上,一個正六邊形依順時針方向的連續三個頂點為$z$、0、$z+5-2\sqrt{3}i$(其中$i=\sqrt{-1}$),則$z$的實部為________。(化成最簡分數)
  • 景女享共備網站使用說明景女享共備網站使用說明
  • 108-學測-數學-09108-學測-數學-09從$1,2,3,4,5,6,7$這七個數字中隨機任取兩數。試選出正確的選項。
    (1) 其和大於10的機率為$\frac{1}{7}$
    (2) 其和小於5的機率為$\frac{1}{7}$
    (3) 其和為奇數的機率為$\frac{4}{7}$
    (4) 其差為偶數的機率為$\frac{5}{7}$
    (5) 其積為奇數的機率為$\frac{2}{7}$